

VERSION: 02
VIGENCIA: Enero de 2010
GERENCIA DE DISTRIBUCIÓN
PAGINA 1 DE 3

CODIFICACIÓN DE ESTRUCTURAS

La codificación que se utiliza para identificar los planos de las unidades constructivas, está basada en el nivel de tensión y la disposición física de la estructura, tal como se ilustra en las respectivas tablas.

1. ESTRUCTURAS EN MEDIA TENSIÓN AÉREAS:

Tabla 1. Estructura del código.

-1-		-2-	-3-		
X ₁	X ₂	#	###		
R	Н	2	281		

El código está compuesto por tres partes:

- En la parte -1-. Se describe e identifica al circuito instalado en la estructura así:
 - X₁ corresponde a la inicial del tipo de estructura instalada:
 R si es de Retención, S si es de Suspensión o P si es de Paso.
 - X₂ corresponde a una estructura en dos postes, que se indica con la letra **H.** En caso de ser estructura en un solo poste, se suprime este caracter.

Tabla 2. Codificación para el tipo de apoyo.

TIPO DE APOYO	CÓDIGO				
	UN POSTE DOS POST				
Paso	Р	PH			
Retención	R	RH			
Suspensión	S	SH			

- En la parte -2-. El número indica el nivel de tensión del circuito:
 - 2, para un nivel de 13,2 kV.
- La parte -3-. Se utiliza un código numérico de 3 cifras específico para cada estructura. Si la estructura existe en las normas ICEL, se toma el mismo número, en caso contrario será un número consecutivo a algún tipo de estructura similar de dichas normas.

	,			
	CVCIONI	DE EC.	TRUCTU	$D \Lambda C$
CODIFI	LACION	DL L3	INULIU	NAJ

VERSION: 02
VIGENCIA: Enero de 2010
GERENCIA DE DISTRIBUCIÓN
PAGINA 2 DE 3

2. ESTRUCTURAS EN BAJA TENSIÓN AÉREAS.

La codificación de las estructuras en baja tensión es de forma similar a la utilizada para estructuras en media tensión.

El código está compuesto por cuatro partes:

- En la parte -1-. Se describe e identifica al circuito instalado en la estructura así:
 P si es de paso, R si es de Retención o S si es de Suspensión.
- En la parte -2-. Se indica la forma constructiva de la red:
 - A, si es red abierta.
 - T, si es red trenzada.
- En la parte -3-. El número indica el nivel de tensión del circuito:
 - 1, para baja tensión.
- En la parte -4-. Se utiliza un código numérico de 3 cifras específico para cada estructura. Si la estructura existe en las normas ICEL, se toma el mismo número, en caso contrario será un número consecutivo a algún tipo de estructura similar de dichas normas.

Tabla 3. Codificación de estructuras en baja tensión.

NÚMERO DE CASILLA	CARACTER	DESCRIPCIÓN
	P (Paso)	
1	R (Retención)	Tipo de apoyo en la estructura
	S(Suspensión)	
2	T (Trenzada)	Tipo de red
	A (Abierta)	•
3	1	Nivel de tensión
4	###	Código numérico de la estructura

CODIFICACIÓN DE ESTRUCTURAS

VERSION: 02
VIGENCIA: Enero de 2010
GERENCIA DE DISTRIBUCIÓN
PAGINA 3 DE 3

3. ESTRUCTURAS ESPECIALES.

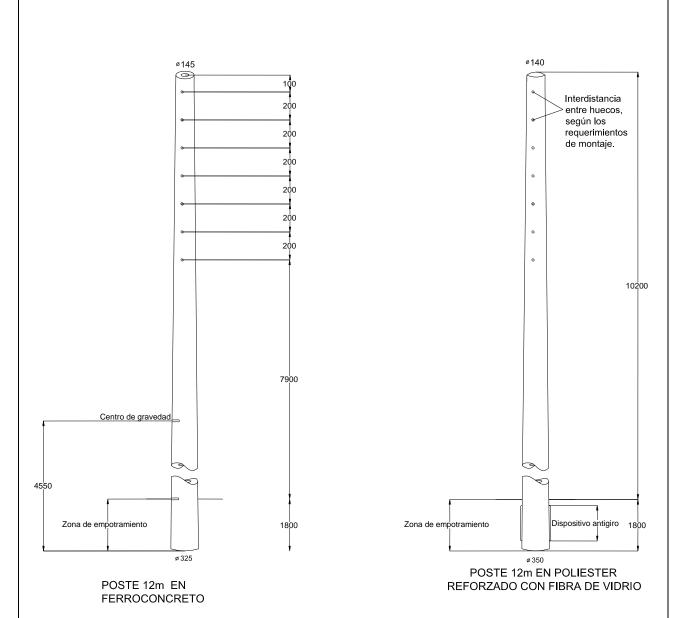
La codificación de las estructuras especiales correspondientes a generalidades, templetes, redes subterráneas, centros de transformación, transiciones, acometidas, equipos de medida, etc., se componen de dos partes y es similar a la utilizada para estructuras en media y baja tensión.

Las dos primeras letras corresponden a las letras iniciales del nombre de la estructura correspondiente y el código numérico de tres cifras, corresponde a la numeración secuencial del listado.

Tabla 4. Codificación de estructuras especiales.

NÚMERO DE CASILLA	CARACTER	DESCRIPCIÓN			
	CV (Caracterización de vías)				
	CS (Cámaras y ducterías)				
4	CA (Cables)	Ting de angue en la catuuratuur			
1	TR(Transiciones)	Tipo de apoyo en la estructura			
	EM (Equipos de medida)				
	CT (Centros de transformación)				
	A (Abierta)				
2	1 ó 2	Nivel de tensión			
3 ###		Código numérico de la estructura			

CODIFICACIÓN DE ESTRUCTURAS

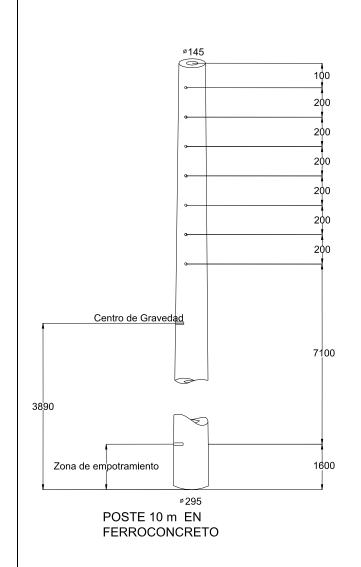


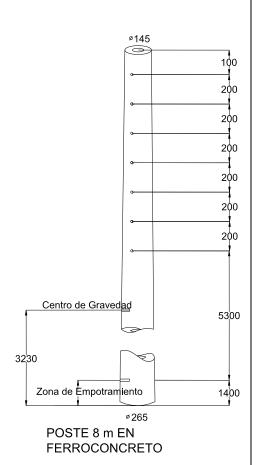
VERSION: 02

VIGENCIA: Enero de 2010

GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 2


Nota. Dimensiones en mm


TAMAÑOS CONSTRUCTIVOS DE POSTES

VERSION: 02
VIGENCIA: Enero de 2010
GERENCIA DE DISTRIBUCIÓN

PAGINA 2 DE 2

Nota: Dimensiones en mm

TAMAÑOS CONSTRUCTIVOS DE POSTES

VERSION: 02
VIGENCIA: Enero de 2010
GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 2

ESPECIFICACIONES TÉCNICAS DE POSTES EN FERROCONCRETO VIBRADOS Y CENTRIFUGADOS												
DIMENSIONAL												
Longitud total (m)	8	8	8	10	10	10	12	12	12	14	14	14
Diámetro cima (cm) +2-0,5	14,50	14,50	19,00	14,50	14,50	17,50	14,50	14,50	19,00	16,00	19,00	20,50
Diámetro base (cm) +2-0,5	26,50	26,50	31,00	29,50	29,00	32,50	32,50	32,50	37,00	37,00	40,00	41,50
Longitud de empotramiento (m)	1,40	1,40	1,40	1,60	1,60	1,60	1,80	1,80	1,80	2,00	2,00	2,00
Centro de gravedad (m)	3,23	3,24	3,38	3,89	3,90	4,00	4,55	4,55	4,78	5,36	5,44	5,55
Desviación máxima eje longitudinal (mm)	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00	20,00
DATOS DE FABRICACIÓN												
Volumen de concreto (m³)	0,20	0,20	0,33	0,33	0,33	0,40	0,45	0,45	0,55	0,75	0,80	0,85
Peso total (kg)	500	520	770	720	770	950	1.000	1.050	1.500	1.700	1.900	2.050
Resistencia mínima concreto PSI (28 días)	3.500	3.500	3.500	3.500	3.500	3.500	3.500	3.500	3.500	3.500	3.500	3.500
Limite F y Acero Ksi longitudinal	60	60	60	60	60	60	60	60	60	60	60	60
Carga mínima de rotura (kgf)	510	750	1.050	510	750	1.050	510	750	1.050	750	1.050	1.350
Carga de trabajo (kgf)	204	300	420	204	300	420	204	300	420	300	420	540
Deflexión bajo carga (mm)	198	198	198	252	252	252	306	306	306	360	360	360
Deflexión permanente (mm)	9,90	9,90	9,90	12,60	12,60	15,30	15,30	15,30	15,30	18,00	18,00	18,00

ESPECIFICACIONES TÉCNICAS DE POSTES

NORMA TÉCNICA : NTC 1329 ISO 9001:00

VERSION: 02
VIGENCIA: Enero de 2010
GERENCIA DE DISTRIBUCIÓN
PAGINA 2 DE 2

ESPECIFICACIONES TÉCNICAS DE POSTES EN POLIESTER REFORZADO CON FIBRA DE VIDRIO (PRFV)								
Altura total	del poste (m)	8,00	10,00	12,00	14,00			
Profundidad de e	enterramiento (m)	1,40	1,60	1,80	2			
Carra da arragaión 204 les	Diámetro de cima (m)	0,14	0,15	0,14	N/A			
Carga de operación 204 kgf	Diámetro de base (m)	0,28	0,32	0,35	N/A			
Carga de rotura 510 kgf	Peso (kg)	55	87	147	N/A			
Course de consusción 200 les	Diámetro de cima (m)	0,14	0,15	0,14	0,12			
Carga de operación 300 kgf	Diámetro de base (m)	0,28	0,32	0,35	0,36			
Carga de rotura 750 kgf	Peso (kg)	61	107	159	219			
Causa da anamaién 430 Kaf	Diámetro de cima (m)	0,15	0,16	0,14	0,12			
Carga de operación 420 Kgf Carga de rotura 1050 kgf	Diámetro de base (m)	0,29	0,33	0,35	0,36			
Carga de lotura 1050 kgi	Peso (kg)	79	123	172	244			
Cargo do anoroción E40 kgf	Diámetro de cima (m)	N/A	0,17	0,14	0,12			
Carga de operación 540 kgf Carga de rotura 1350 kgf	Diámetro de base (m)	N/A	0,34	0,35	0,36			
Carga de lotura 1350 kgi	Peso (kg)	N/A	148,00	222	284			

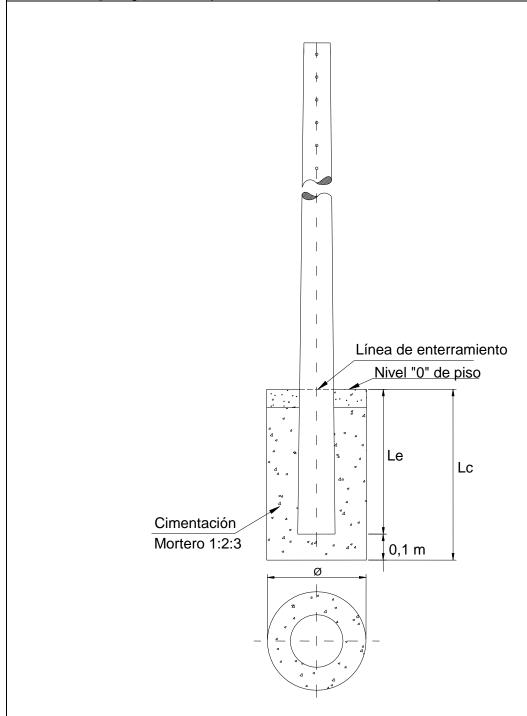
Para todas las referencias:

Factor de seguridad: 2,5 - Conicidad: 1,8% - Norma de fabricación: ASTM D 4923-01. Los postes PRFV, están provistos de un dispositivo antigiro en la zona de empotramiento.

ESPECIFICACIONES TÉCNICAS DE POSTES DE MADERA DE EUCALIPTO								
Longitud del poste (m)	Pro	fundidad de er	nterramiento (m)					
Longitud dei poste (iii)	En tierra blanda	En roca	En zonas inundadas					
8	1,60	1,40	Rellenar con rocas o concreto pobre					
10	1,70	1,50	Rellenar con rocas o concreto pobre					
12	1,80	1,60	Rellenar con rocas o concreto pobre					
14	2,00	1,80	Rellenar con rocas o concreto pobre					

Nota: Para estructuras de retención y ángulo fuerte, aumentar la profundidad de enterramiento en un 15%.

ESPECIFICACIONES TÉCNICAS DE POSTES



VERSION: 02

VIGENCIA: Enero de 2010

GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 2

DETALLE DE CIMENTACIÓN DE POSTES

VERSION: 02

VIGENCIA: Enero de 2010 GERENCIA DE DISTRIBUCIÓN

PAGINA 2 DE 2

DETALLE DE ENTERRAMIENTO Y CIMENTACIÓN DE POSTES

Lc: Profundidad total de excavación y cimentación (m).

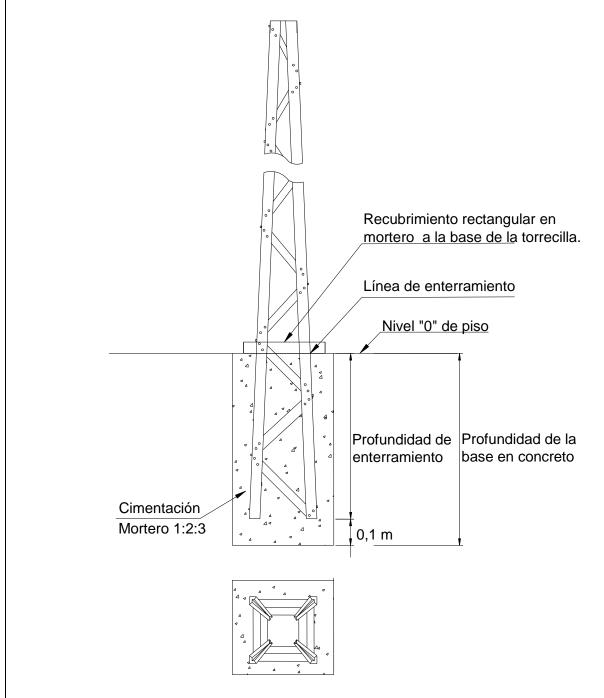
Le: Profundidad de enterramiento (m).

h: Altura del poste (m).

ECUACIONES:

Le = 0,1*h + 0,6 [m] Lc = Le + 0,1 [m]

	CIMENTACIÓN DE POSTES								
Altura del poste	Profundidad de enterramiento	Profundidad de la cimentación	Capacidad de rotura en p (kgf)						
			510	750	1.050	1.350			
h (m)	Le (m)	Lc (m)	Diámetro de la excavación						
				4	Þ(m)				
8	1,40	1,50	0,50	0,50	0,60	-			
10	1,60	1,70	0,60	0,50	1,00	-			
12	1,80	1,90	0,60	0,75	1,00	1,10			
14	2,00	2,10	-	0,75	1,00	1,10			

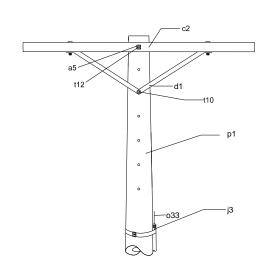


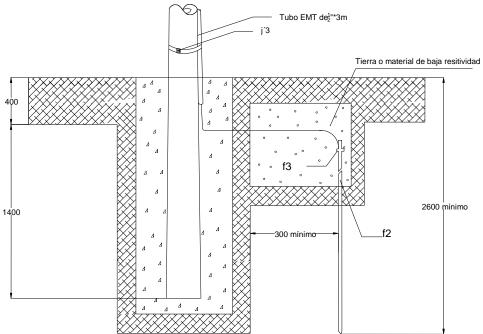
VERSION: 02

VIGENCIA: Enero de 2010

GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 2

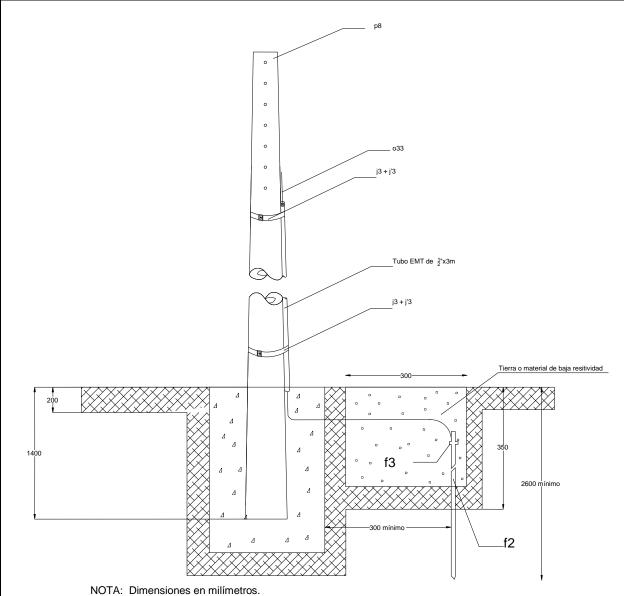

DETALLE DE CIMENTACIÓN DE TORRECILLAS



VERSION: 02

VIGENCIA: Enero de 2010 GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 1

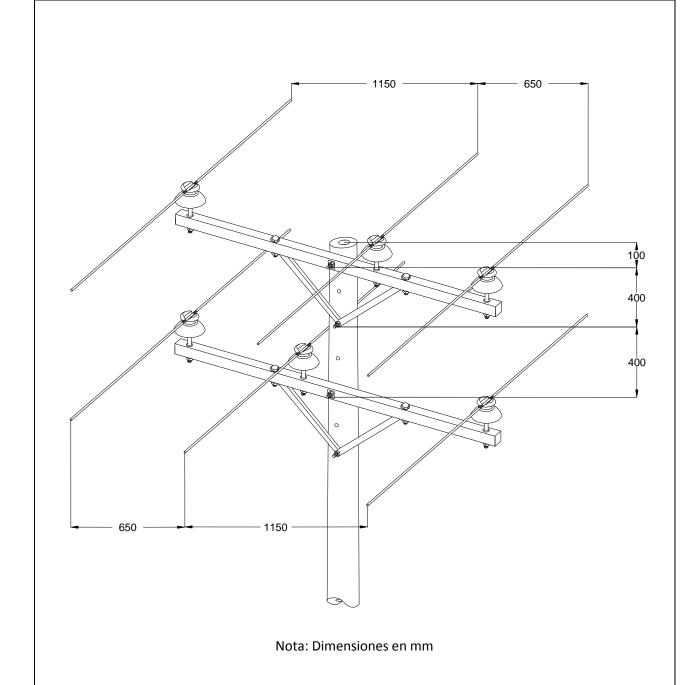

NOTA: Dimensiones en milímetros.

ACCESORIOS PARA PUESTA A TIERRA EN MEDIA TENSIÓN

VERSION: 02
VIGENCIA: Enero de 2010
GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 1

ACCESORIOS PARA PUESTA A TIERRA EN BAJA TENSIÓN



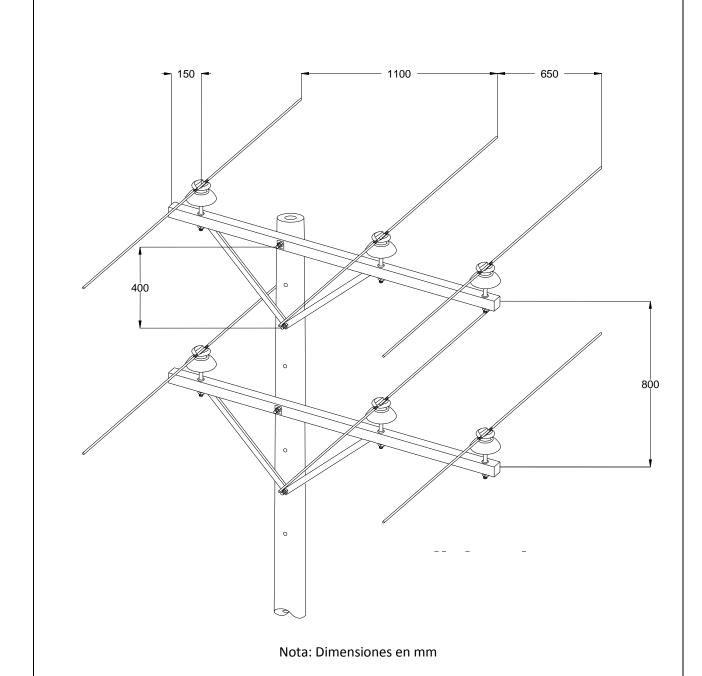
VERSION: 02

VIGENCIA: Enero de 2010

GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 1

DISTANCIAS MÍNIMAS EN ESTRUCTURAS TIPO TANGENCIAL

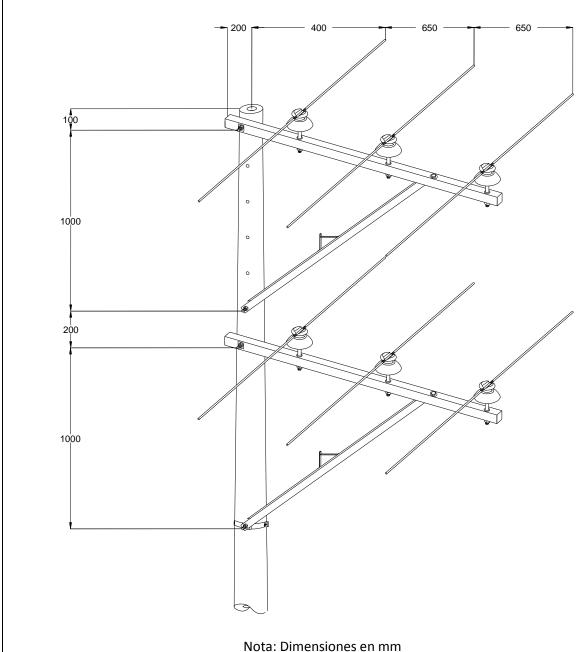


VERSION: 02

VIGENCIA: Enero de 2010

GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 1

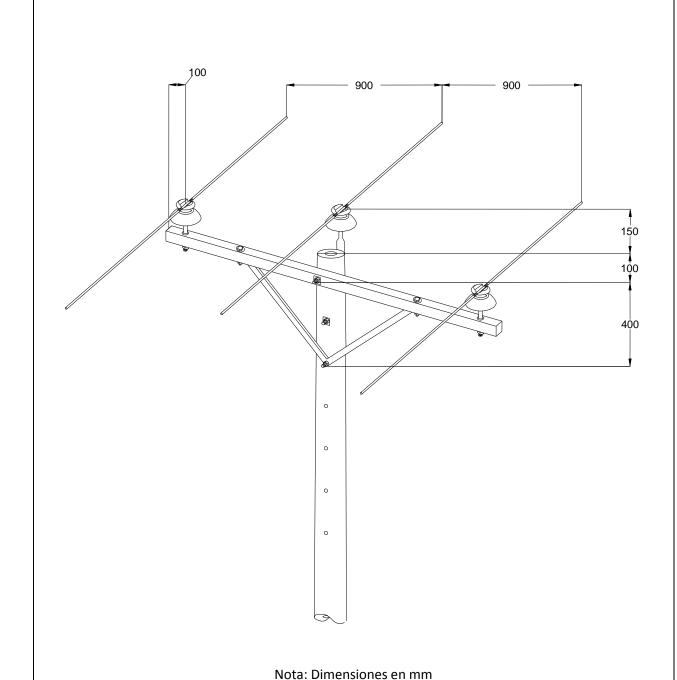

DISTANCIAS MÍNIMAS EN ESTRUCTURAS TIPO SEMIBANDERA

VERSION: 02

VIGENCIA: Enero de 2010 GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 1

DISTANCIAS MÍNIMAS EN ESTRUCTURAS TIPO BANDERA



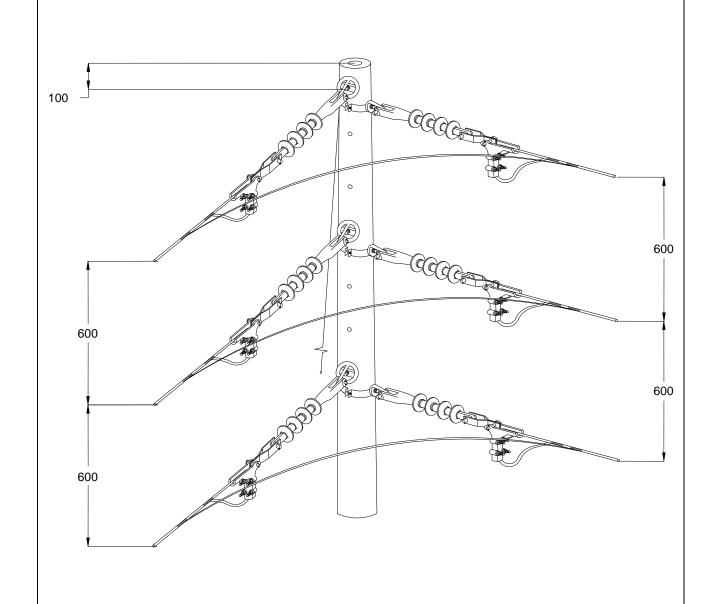
VERSION: 02

VIGENCIA: Enero de 2010

GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 1

DISTANCIAS MÍNIMAS EN ESTRUCTURAS TIPO TRIANGULAR



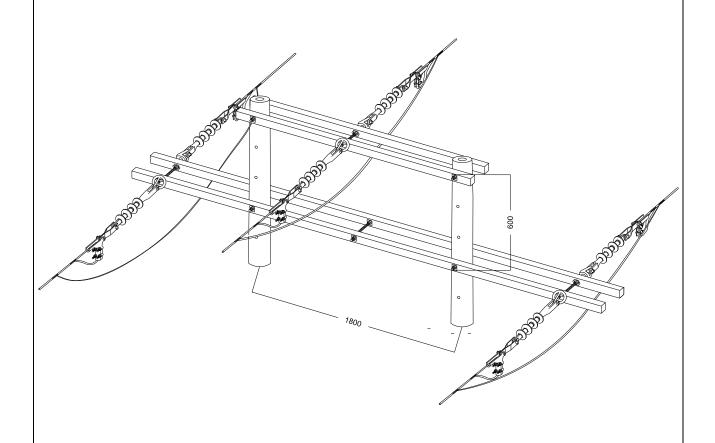
VERSION: 02

VIGENCIA: Enero de 2010

GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 1

Nota: Dimensiones en mm


DISTANCIAS MÍNIMAS EN ESTRUCTURAS TIPO VERTICAL

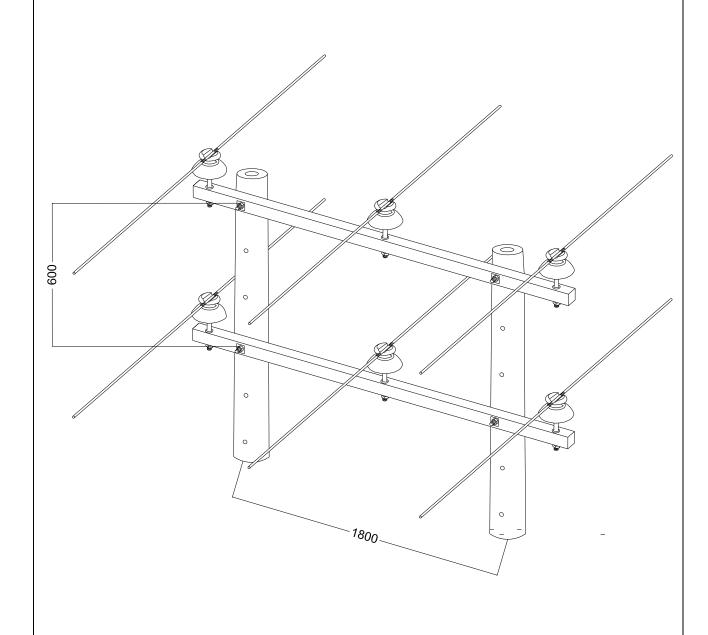
VERSION: 02

VIGENCIA: Enero de 2010 GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 1

Nota: Dimensiones en mm

DISTANCIAS MÍNIMAS EN ESTRUCTURAS EN H DOBLE PLANO



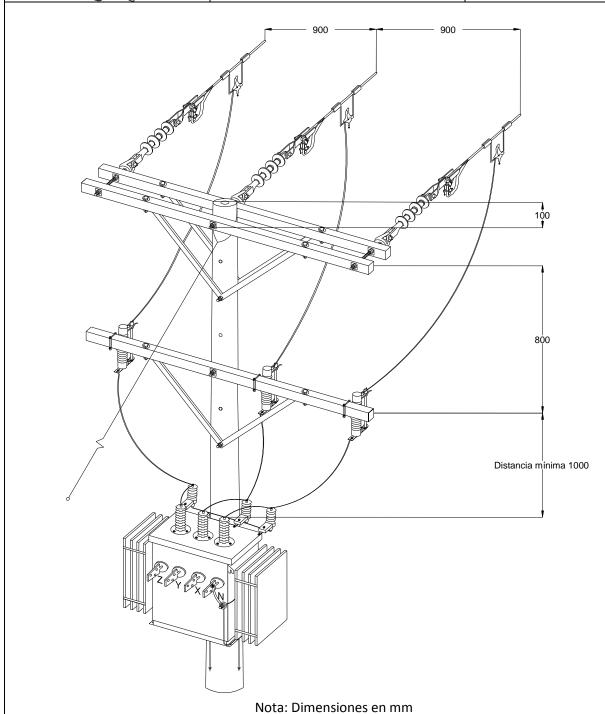
VERSION: 02

VIGENCIA: Enero de 2010

GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 1

Nota: Dimensiones en mm


DISTANCIAS MÍNIMAS EN ESTRUCTURAS EN H DOBLE CIRCUITO

VERSION: 02

VIGENCIA: Enero de 2010 GERENCIA DE DISTRIBUCIÓN

PAGINA 1 DE 1

DISTANCIAS MÍNIMAS EN ESTRUCTURAS CON CENTROS
DE TRANSFORMACIÓN

VERSION: 02
VIGENCIA: Enero de 2010
GERENCIA DE DISTRIBUCIÓN
PAGINA 1 DE 1

VAI	NO MÁXIMO REG	COMENDADO SEGÚN EL	. TIPO	DE E	STRU	CTURA	DE 13	3,2 kV	,	
DISPOSICIÓN Y TIPO DE ESTRUCTURA	CRUCETA (m)	DISTANCIA (m) ENTRE CONDUCTORES EN EL CENTRO DEL VANO	LONGITUD MAXIMA DEL VANO (m), SEGÚN EL SISTEMA							
CODIGO EBSA			o	o	o	0	o	0	0	0
RH-2230	2 y 4	3,80							500	
RH-2231	4	3,80				230				
RH-2280	2 de 4 y 2 de 4	3,80				230				
P-2510	2	1,80	26	69						
P-2101	2	1,80							200	
P-2103	2	1,80				90				
PH-2202	4	3,80				240				
PH-2201	2 y 4	3,80							500	
PH-2210	2 de 2 y 2 de 4	3,80							500	
PH-2211	2 de 4	3,80				240				
PH-2250	2 de 4	3,80				250				
PH-2260	2 de 4 y 2 de 4	3,80				250				
SH-2225	2 y 4	3,80							500	
SH-2226	4	3,80				240				
SH-2275	2 de 4	3,80				240				

NOTAS:

- Tomado de normas ICEL.
- Los valores anteriores son sugeridos, para otras estructuras y mayores detalles, se debe efectuar el cálculo mecánico de la estructura.

VANO MAXIMO RECOMENDADO SEGÚN EL TIPO DE ESTRUCTURA

VERSION: 02
VIGENCIA: Enero de 2010
GERENCIA DE DISTRIBUCIÓN
PAGINA 1 DE 1

ÁNGULO MÁXIMO RECOMENDADO SEGÚN EL TIPO DE ESTI	RUCTURA	
DISPOSICIÓN Y TIPO DE ESTRUCTURA	ÁNGULO	
RETENCIÓN		
R-2514	0° a 45°	
R-2540	30° a 60°	
R-2541	60° a 90°	
R-2130	0° a 45°	
R-2562	0° a 45°	
R-2180	0° a 45°	
RH-2230	0° a 45°	
RH-2231 , RH-2232	0° a 45°	
PASO		
P-2509 ,P-2510	0° a 5°	
P-2511, P-2512	5° a 30°	
P-2101	0° a 8°	
P-2103 , P-2104	0° a 5°	
P-2110	3° a 10°	
P-2112 , P-2113	0° a 45°	
P-2150	0° a 5°	
P-2160	0° a 10°	
PH-2211 , PH-2221	3° a 11°	
PH-2201	0° a 5°	
PH-2202 , PH-2215	0° a 5°	
PH-2210	3° a 10°	
PH-2250	0° a 5°	
PH-2260	3° a 10°	
SUSPENSIÓN		
S-2175	0° a 3°	
SH-2225	0° a 3°	
SH-2226	0° a 3°	
SH-2275	0° a 3°	

NOTAS:

- Tomado de normas ICEL.
- Los valores anteriores son sugeridos, para otras estructuras y mayores detalles, se debe efectuar el cálculo mecánico de la estructura.

ANGULO MÁXIMO RECOMENDADO SEGÚN EL TIPO DE ESTRUCTURA